
 

 

 

Kasthuri Jayarajah | Research Statement 
The proliferation of ubiquitous technologies such as the Internet of Things, personal wearable sensors, and 
autonomous vehicles, enable smarter and efficient communities. A wide variety of rich sensing modalities 
available on these devices such as vision, motion, and physiology of the persons, opens interesting 
possibilities; coordination amongst a group of traffic cameras at an intersection for improved situation 
awareness; robotic teammates such as indoor drones that respond to and proactively assist human partners 
in safety critical environments; smart buildings that dynamically adjust lighting and heating control based on 
its occupants’ routines. In my work, I build real-time, human-centered, cyber-physical systems that address 
challenges in Mobile Computing, Artificial Intelligence of Things, and Human-Autonomy Teaming. Due to 
the multidisciplinary nature of my work, I’m versed in (a) prototyping systems for resource-constrained edge 
platforms, wearable devices and autonomous vehicles, and (b) conducting survey-based user studies as well 
as field studies involving technology-mediated behavioral interventions. 
 
As my colleagues and I articulate in recent articles [1, 2], realizing such human-centered systems operating at 
the edge of the network is often challenged by two factors: (a) formidable energy and compute constraints 
restrict the types of processing loads these hardware platforms can handle, especially for perception tasks, 
and (b) not accounting for individual and collective behaviors of people who interact with such systems can 
lead to suboptimal performance. Therefore, my research approach involves either enhancing the decision-
making fidelity, or significantly reducing the resource demands, of such systems, revolving around the 
following themes: 

● Wearable-based implicit guidance for autonomous agents that adapt runtime behavior [1,3], 
● Collaborative perception where networked cameras cooperate for improved performance through 

lightweight state sharing [2,4,5], and, 
● Human behavioral characterization for building predictive cyber-physical systems [6-12]. 

 
My long-term research goal is to push the frontiers in context-aware computing through collaborative human-
machine and machine-machine systems. For example, I envision Future Work environments and Human(s)–
Swarm teams that adapt to individual and collective human intent, preferences, performances and nuances, 
through a combination of wearable, infrastructural sensors and actuators. Below, I describe my current and 
past efforts towards realizing this future vision. 
 
1. Wearable-based Guidance for Attention–Sharing, Human–Drone Teams 

In this work, I explore the concept of wearable-based "passive guidance" from human(s) in the team in helping 
direct machines towards maximizing the effectiveness of human-machine combined sensing objectives. While 
communication in such teams is imperative for successful team performance, direct communication (e.g., 
verbally) can be distracting to humans under high cognition workloads (e.g., first responders involved in search 
and rescue). Thus, "implicit coordination" where machines are able to synchronize with their human-
teammates without explicit intervention has its advantages. Our vision for such implicitly interactive, 
attention-sharing human--machine teams [1] is motivated by two salient trends: the availability of (a) rich 
sensor modalities such as fine-grained motion, gaze, gestures and physiological sensing on off-the-shelf 
wearable devices allow for continuous, passive monitoring of nonverbal, implicit behavioral cues, and (b) tiny 
autonomous drones with both sensing and on-board compute resources that are also safe to operate in close 
proximity to humans. In ongoing work, I explore scenarios where partnering drones efficiently scan 
environments and assist humans, overcoming challenges owing to their size, weight, and power (SWAP) 
constraints, through gaze-based uncertainty predictions, assisted spatial awareness1 and efficient resource 

 
1 Short video demonstration of a drone synchronized with the human’s motion: 
https://www.youtube.com/watch?v=INQULM5csMU 



 

 

 

orchestration. Coordinated scanning includes two goals: (1) complementary - achieve wider coverage where 
the machine is able to scan regions where the human is not paying attention to, and as a team, achieve faster 
and efficient scanning, and (2) collaborative - higher resolution scanning and inference where a human 
requires more accurate visibility and augmentation from the machine. In both cases, machines require to know 
where the human is paying attention to, and not just what is within the "visible" range. Through this work, I’m 
developing techniques to gauge human visual attention using a combination of wearable technologies that 
allow for accurate tracking of eye movements (e.g., using noisy EOG signals) in the presence of motion artifacts 
(determined using on-body inertial and EEG signals) and investigate techniques for continuous, light-weight 
exchange of attention information. The drone then adapts its attentional focus and/or resolution, on-the-fly, 
to synchronize with their human-teammates’ intent.  

While the above direction focuses on efficiency for machines, in ongoing work, my work explores how 
machines can in turn augment human functions through continuously monitoring nonverbal cues and active 
intervention [3]. While the effectiveness of physiological sensing (such as via EEG) has been demonstrated 
with high-fidelity sensors, in lab and controlled settings, for tasks such as inferring emotion, the ability to infer 
nonverbal cues using commercial-off-the-shelf devices (e.g., the 5-channel Emotiv Insight) with far-degraded, 
sparse signals, is relatively under-explored. Thus, a key research question this work addresses is in reliably 
sensing such cues under sparsity by exploring functional connectivity and multimodal sensor fusion based 
solutions. My colleagues and I studied recall during navigation as an example case study where active 
intervention from machines can improve memory functions in people. In user studies conducted on desktop-
based navigation tasks, we found that visually cueing participants of their EEG-derived, high attentional 
moments during their walks, increases their ability to recall the route significantly better (by up to 12%). 
 
2. Collaborative Perception at the Edge 

A variety of physical environments, including smart cities and tactical battlefield networks are increasingly 
being instrumented with large numbers of resource-constrained sensors and IoT devices (e.g., cameras, 
microphone arrays and environmental sensors). A rising recent trend involves executing inferencing pipelines 
(to perform increasingly complex tasks, such as object recognition or target localization), in-situ and in real 
time, at such edge nodes. There are two salient features associated with these trends: (1) Sensors are often 
deployed with varying degrees of redundant coverage--e.g., cameras in buildings often have partially 
overlapping fields of view, implying that their sensed data are implicitly spatiotemporally correlated, and (2) 
inferencing increasingly involves the execution of computationally prohibitive machine learning (ML) pipelines 
(e.g., CNNs for image-based object detection). Executing such deep neural networks (DNNs) gives rise to well-
known throughput bottlenecks and prohibitive energy consumption. 

We introduce and explore the paradigm of Collaborative Deep Intelligence that exploits sensor multiplicity 
(e.g., a group of networked cameras with overlapping views) for performance benefits such as improved 
accuracy with minimal overhead of latency. We explore alternate designs for collaboration for the illustrative 
task of person detection on video sequences [2, 4, 5]: (1) probabilistic fusion of independent deep inferences 
at the output stage (CNMS) [5], (2) augmentation of the image channels of a reference camera (i.e., the 
typical RGB) with additional input from collaborator views' past inferences (CSSD) [5], and, more recently, (3) 
by adapting the ML pipeline on-the-fly based on lightweight digest sharing between collaborating nodes 
[2].  For the latter, we do so by (a) first employing a light-weight scene summarization technique that extracts 
knowledge from collaborators' views, from early hidden layers of the deep pipeline that is shared over the 
network and (b) injecting the digest back into the later layers of the reference camera's processing pipeline 
for improved accuracy. Compared to the former alternatives, this design incurs zero re-training of the deep 
networks, adds minimal overhead to the processing pipeline and the bandwidth required for sharing digests 
over the network and seamlessly rolls back to the default, non-collaborative operational mode when 
collaborators are not available or deemed unreliable. This work is thus motivated by a fundamental research 
question: to enable execution on mobile/embedded devices, is it possible to rely on collaboration to 
replicate the accuracy of very-deep, but high accuracy neural networks while incurring the computational 
expense only of shallower, older DNNs (with concomitant latency and energy benefits)? On benchmark 



 

 

 

datasets, we recover as high as 80% of the accuracy gain with as few as two collaborators. In ongoing work, 
I explore notions of self-configuration and steerability for collaborative perception systems where cameras 
learn to identify regions that benefit the most from collaboration, quantify the goodness of collaborators for 
selective collaboration, and over time, “steer” themselves towards optimal configurations.  

3. Dissertation Work: Human Behavior-driven Cyber-Physical Systems 

A large part of my PhD research has focused on understanding human mobility and social contexts, both 
indoors and outdoors, to drive the design of human-centered systems. I used fine-grained, longitudinal 
mobility observations using a server-side, WiFi-based positioning system, indoors, as well as mass transit 
transactions, city-wide, to study human mobility patterns [6-9]. By adopting measures from network science, 
I developed a set of features that captures correlated movement characteristics, to quantify the strength-of-
ties between different individuals [6]. As I explain next, I used such passively extracted “physical – social” 
relationships to reveal key insights into human behavior (e.g., mobility, predictability in routines [10], 
interruptibility [8], influence of social context [11,12], etc.) to build novel, proactive cyber-physical systems.  

We designed BuScope [9], a live mobility analytics platform for smart cities, that generates neighborhood-level 
insights on high volumes of streaming mobility data, with O(secs) responsiveness, to create novel and “live” 
smart city services. We base this work on the observation that a vast majority of public bus trips are predictable 
and driven by routine commuting patterns which manifests in two aspects: (a) individual-level regularity and 
(b) aggregate-level conformity. The platform is flexible enough to recompute the analytical insights, at both 
individual and bus-level specificity, very frequently for peak city-scale workloads—e.g., it incurs 17.33 msecs 
average latency to process each of ~270,000 boarding and alighting transactions generated by 221,217 
commuters on 3777 buses, during a 30-minute peak period. Using realistic neighbourhood-scale simulation 
models, we show that look-ahead prediction of the number of disembarking passengers allows us to 
dynamically pre-position shared, last-mile autonomous taxis at different bus stops—this can reduce the 
waiting time experienced by a disembarking customer by 75%, to about 30 secs for single capacity vehicles. 

In the past, studies have relied on the predictability of mobility to generate various urban insights.   In a 
complementary effort, I studied the ability to predict instances of unpredictability in human mobility to 
support highly responsive smart building systems [10], specifically, to predict moments when individuals will 
default from their routine behavior. This work describes a framework to detect episodes of future anomalous 
mobility using an individual’s current deviation from his/her routine mobility together with the anomalous 
behaviour of his/her social ties, with over 90% accuracy even at reasonably long look-ahead times of 4 hours. 
I demonstrate how proactive optimization of urban operations is possible through the use case of mobility-
aware task assignments to crowd-workers on a smart campus where we found that, in comparison to workers 
with anomalous mobility behaviour, others achieve higher task completion rates.  

My colleagues and I deployed the LiveLabs ecosystem [11] on campus to study human behaviour under 
varying hyper-contexts such as location and group, and a novel class of behavioral experimentation. The 
system consists of (a) a passive, server-side system for monitoring indoor mobility of thousands of users who 
connect to the university’s WiFi infrastructure, (b) a suite of mobile applications running on opt-in 
participants’ phones that capture interactions  of  its  participants  with  their  respective  phones,  and  (3)  a  
behavioural intervention engine that allows experimenters such as social scientists to use such contexts to 
actuate behavioural change and theorize new hypotheses. As an example of the latter, we designed a 
consumer marketing experiment on top of LiveLabs [12]. We showed that cohesiveness of the group a 
consumer is part of, at the time of receiving marketing promotions, influences their attitude towards those 
promotions.  

4. Future Research Plans 

In the future, I intend to broadly investigate the possibilities around dramatically increasing the operational 
efficiency of future urban environments through a combination of applied ML advances and human 



 

 

 

behavior-driven optimizations. I am excited to explore opportunities for optimizations in the following key 
problem areas that I believe are central to future cities: 

(1) Next Generation Human-Swarm Teaming: With a paradigm shift towards edge-centric applications where 
low-powered IoT and autonomous devices sense and analyse data at real time, there's an increasing need for 
optimizing sensing and inference pipelines, especially under extreme SWAP constraints. While my present 
work explores re-configurations of the ML pipelines of cooperating devices, responding to the behavior of 
human partners “in-situation”, a next step in human-autonomy teaming is in designing autonomous partners 
that continually learn and improve through positive/negative, implicit reinforcements from human partners. 
I envision a next generation of teaming where autonomous agents gain fine-grained understanding of the 
human blueprint on navigating complex tasks (e.g., behavioral cloning of scouting) that they are able to exceed 
both human and state-of-the-art autonomous performance. A key outcome of this future vision is that 
increasingly a greater number of autonomous agents and fewer humans will be required for undertaking 
complex tasks in safety-critical scenarios (e.g., rescue operations in post-disaster response). 

(2) Future of Work: While the success of smart environment deployments has traditionally been measured 
through hard metrics (e.g., wait time reduction of transportation systems), increasingly, there has been 
interest in softer metrics such as the quality of life of its residents, and productivity as a sign of the health of 
the economy. With an anticipated boom of personal wearables and IoT devices at workplaces, unobtrusive, 
continuous and privacy-preserving quantification of wellness and productivity measures, I believe, will be of 
critical interest for future cities. In addition to offering behavioral insights, a key application of technology 
would be in enabling in-situ interventions for promoting positive behavioural change – e.g., enabling virtual 
“casual” interactions in remote teams of white-collar office workers through continually sensed physiology, 
dynamically altered “personalized” workspaces (e.g., lighting, sound levels) based on implicitly learned 
productivity–preference relationships for desk-workers, etc. 
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