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ABSTRACT
Driven by advances in deep neural network models that fuse multi-
modal input such as RGB and depth representations to accurately
understand the semantics of the environments (e.g., objects of dif-
ferent classes, obstacles, etc.), ground robots have gone through
dramatic improvements in navigating unknown environments. Re-
lying on their singular, limited perspective, however, can lead to
suboptimal paths that are wasteful and quickly drain out their bat-
teries, especially in the case of long-horizon navigation.We consider
a special class of ground robots, that are air-deployed, and pose the
central question: can we leverage aerial perspectives of differing
resolutions and fields of view from air–to–ground robots to achieve
superior terrain-aware navigation? We posit that a key enabler
of this direction of research is collaboration between such robots,
to collectively update their route plans, leveraging advances in
long-range communication and on-board computing. Whilst each
robot can capture a sequence of high resolution images during their
descent, intelligent, lightweight pre-processing on-board can dra-
matically reduce the size of the data that needs to be shared among
its peers over severely bandwidth-limited long range communica-
tion channels (e.g., over sub gigahertz frequencies). In this paper,
we discuss use cases and key technical challenges that must be
resolved to realize our vision for collaborative, multi-resolution
terrain-awareness for air–to–ground robots.
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1 INTRODUCTION
Recent advances in algorithms for autonomous navigation [9] to-
gether with mobile computers that can now run state-of-the-art
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Figure 1: Contrasting (a) traditional ground navigation based
on local sensing against (b) AirDrop-based navigation with
local + global terrain awareness

perceptionmodels, have led to ground robots as well as aerial robots
being deployed in a variety of practical situations (e.g., in manufac-
turing environments [4], terrain-aware search and rescue [16], etc.).
Very recently, efforts towards terrain-aware path planning based on
techniques such as reinforcement learning [15, 36, 39] have gained
significant traction where robots have better situational awareness
leading to better path choices. However, singular perspectives of
such ground robots, may lead to local decisions that may turn out
to be expensive, especially in scenarios where the robots need to
navigate over large areas with differing terrains. To provide a global
perspective of the terrain, recent works have also considered the
combination of air–ground perspectives where one or more aerial
and ground robot partners work together [5, 13]. However, these
works are limited by the low-resolution nature of the high alti-
tude aerial perspectives and system evaluations do not consider
wide area navigation. Our preliminary evaluations over benchmark
datasets show that with a decrease in resolution (from 200 to 100
pixels, for e.g.), the object detection accuracy using state-of-the-art
deep neural networks (DNNs) dramatically drop by up to 15%.
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Figure 2: Illustrative Scenarios of AirDrop. Left–Air-delivering humanitarian aid during disaster response, Right–Air-deploying
ground sensors in contested environments.

In this position paper, we present a novel paradigm for air–
ground teaming, illustrated in Figure 1; where multiple, collabora-
tive robots that are air-delivered, communicate over long-range ra-
dio, to share among themselves light-weight aerial digests of increas-
ing resolution (of narrower regions) ascertained during their de-
scent. These digests are then fused with low resolution, albeit wide
area, perspectives to compute more accurate terrain cost maps used
in generating ground navigation paths for the cooperating robots.
After reaching the ground, these robots then combine their locally
sensed ground situation together with their collaborative knowl-
edge of the global terrain for making better navigation choices.
This line of enquiry requires tackling multiple design and system
challenges for making collaborative aerial perception feasible on
severely resource-constrained devices (e.g., communication in the
sub gigahertz frequencies over multiple kilometers limited to ≤ 10
kBits/second).

Our goal for this paper is not to discuss specifics of system design,
but to motivate the novel setting of collaborative, distributed aerial
perception for superior ground navigation. In the remainder of the
paper, we describe scenarios for which AirDrop is designed for,
goals guiding the architecture of AirDrop and discuss key technical
challenges that must be addressed in realizing AirDrop.

2 MOTIVATING SCENARIOS
We discuss two future scenarios, illustrated in Figure 2, thatAirDrop
supports.

Air-deploying ground sensors in contested environments:
In contested environments, ground sensors used for zonal recon-
naissance are typically deployed by human soldiers which leaves
them exposed to adversarial forces for prolonged periods. Since
recently, air-delivering sensors using unmanned aerial vehicles has
gained traction – however, in settings such as these – this poses two
main challenges: (i) the electronics onboard the drones, especially
during active flight, emit radio frequency signatures [30] that can
lead to them being easily detected, and (ii) the maximum payload
that can be carried is limited (e.g., maximum of 2.5 kg supported
by the Mikrokopter [25]). In order to remain discreet, an alternate
mode of air–delivering is to drop the sensors, or robotic agents,
from air where external structures surrounding the robot can ab-
sorb the forces from the impact with the ground and protect the
robot within. The descent then is governed by the laws of free fall.
Once reaching ground, mechanisms on the robot allow it to escape

and continue with its ground mission (e.g., clearing vegetation at
specific locations, station itself at specific locations for surveillance,
etc.). Based on the aerial perspectives ascertained during descent,
global reasoning around the terrain characteristics in the region
(e.g., grassy patches and water bodies that are costly to navigate)
together with the locally sensed surrounding (e.g., immediate ob-
stacles) guide the ground robots in navigating towards their target
sites.

Last-mile humanitarian aid delivery during disaster re-
sponse: Air-delivering humanitarian aids (such as dry rations, vac-
cines, etc.) has been a common last-mile distribution mechanism
as part of disaster response operations. However, delivering from
higher altitudes result in the aid being sometimes dropped off in
inaccessible sites. On the contrary, air-dropping cheap yet effective
ground robots carrying such payloads, electronically designed to
maneuver their descent (e.g., acceleration-triggered tilting of the
robot body to move left or right), can overcome such challenges.
From an approximate drop site, as illustrated in Figure 2, the robots
can then navigate over less costly routes to reach target site(s) as
compared to expensive, or sometimes inaccessible, shortest paths.

In both these scenarios, we make the fair assumption that the
environments in which the sensors/robots are being deployed in are
(i) highly dynamic (e.g., hostile, post-disaster, etc.) and (ii) require
that the robots navigate towards targets that are often mobile (e.g.,
people). This serves as the basis of the collaborative approach we
articulate in this paper where we envision multiples of custom-
deployed robots cooperate for high fidelity imaging. We also point
out to the astute reader, in situations where these is no requirement
to be discreet, a single UAV flying at various altitudes can be an
alternative for spatially distributed, multi-resolution sensing of the
terrain. The downstream technical challenges as we describe later
in Section 3.3, nevertheless, remain relevant.

3 DESIGNING AIRDROP
As we introduced in Section 1, state-of-the-art models in ground
navigation rely on their local perspectives potentially leading to
suboptimal paths on wide-area navigation tasks. In this section,
we identify salient features of a collaborative, distributed, aerial
perception paradigm, discuss a preliminary architecture forAirDrop,
and discuss key technical challenges.
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Figure 3: End-to-end, collaborative terrain-awareness archi-
tecture

3.1 Opportunities for Collaborative,
Terrain-Awareness

We posit that a collaborative, air–to–ground approach provides
significant benefits over a non-collaborative, local approach:

Spatially distributed, multi-resolution perspectives: While
wide area perspectives can provide an overview of the vast terrain
in a few images, as we see in section 4.1, the lower resolution
images suffer from significant deterioration in performance for
vision/perception models. On the other hand, aerial perspectives
that can be taken at lower altitudes can produce higher resolution
images but at a loss of coverage. Hence, we posit that a set of
spatially distributed air-born sensors/robots can provide both the
desired coverage and resolution.

Accurate terrain awareness: As a result of the above higher
quality images, and better performance of vision models, reasoning
over terrain for wide areas can become more accurate, for the set of
robots. On the contrary, robots that rely only on local perspectives
of their own and operate in isolation, are severely disadvantaged.

3.2 AirDrop: Design Principles
In Figure 3, we illustrate a preliminary architecture for AirDrop,
and articulate the following system components.

Central server: Initially, we assume that at least a single, wide
area coverage aerial image of the area (e.g., satellite imagery or
taken by the aircraft delivering the ground robots) to be surveyed
exists. We envision that one (or more) ground stations that acts
as the central server runs the baseline path planning for the col-
lective of robots on mission. It then receives aerial perspectives
of increasing resolution from the individual robots during their
descent and by establishing spatio-temporal correlations amongst
them, it stitches the pieces of subregions covered by the images to
create a super-resolution image that it uses to run algorithms such
as image segmentation for reasoning over the terrain underneath.
Based on the intermittent updates from the spatially distributed
robots, it then revises the set of planned paths and updates over
long range communication. A key design goal here is that the more
expensive, compute-intensive operations are offloaded to a more
powerful compute node while having the edge node (robots in this

case) carry out only lighter tasks. In the event that ground stations
do not exist, we assume that the aircraft is large enough to match
the computational and power needs to receive image updates from
the individual robots and update the path plans.

Air–to–ground robots: During descent, the edge nodes inter-
mittently take aerial perspective shots, and upload them back to
the server. These nodes are also equipped with onboard compute
capabilities where they can run full/partial neural network models.
However, a key goal here is to minimize the resource consumption
during the descent to maximize resources availability and opera-
tional time during the actual ground navigation. After reaching the
ground, together with the updated paths and real-time situation
awareness on the ground (i.e., the local perspective), the robots
then navigate towards predefined targets.

Alternative designs: Satellite imagery has demonstrated to be
useful in providing aerial perspectives for a variety of applications
(e.g., monitoring climate change [27], wildfire flareups [20] and
flood forecasting [38]). However, recent works have shown that
(i) detecting small objects such as vehicles or people, especially
when not present in clear and vast fields, is difficult [14], and (ii)
such high-quality satellite imagery with short re-visit times are
not easily accessible to disaster-prone, developing regions [28] to
enable quick response. AirDrop’s design towards acquiring high-
resolution, real-time aerial perspectives is thus motivated by the
scenarios we consider – where targets such as people are mobile and
the ground situation is highly dynamic (e.g., post-disaster, hostile
environments, etc.).

Metrics of interest: A key performance measure for AirDrop, is
the improvement in navigation efficacy – e.g., total trip time and en-
ergy consumption for long-horizon navigation tasks, as compared
to baseline models that only leverage (i) ground perspectives and
(ii) a single aerial, low resolution perspective in combination with
ground. Furthermore, the overheads in enabling multi-resolution
collaboration need to be accounted for; for e.g., the additional en-
ergy consumption from serial image acquisition during the descent,
any onboard computation, and due to any algorithmic changes
to how they read the terrain cost maps together with the ground
perspectives sensed.

3.3 Technical Challenges
In this section, we highlight key technical challenges that must be
addressed to fully exploit collaborative, multi-resolution scanning.

1. Optimally deploying ground robots: To cover a given area
with a minimum guaranteed accuracy, AirDrop should devise an
optimal strategy for air-deploying the robots. The spatio-temporal
scheduling of the individual robot drops should account for sev-
eral factors including the number of robots, the sensing fidelity vs.
field of view vs. altitude characteristics, and fall characteristics (e.g.,
horizontal departure from an estimated drop site due to prevail-
ing winds). While existing optimization frameworks [6, 10] have
investigated optimal placement of static sensors in wireless sensor
networks, devising a strategy for coverage coupled together with
the physical characteristics of the descent is an interesting problem
to pursue.
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2. Tradeoffs in multi-resolution semantic segmentation:
Furthermore, from the series of multi-resolution images collabo-
ratively produced, AirDrop stitches a higher quality, fused image
over which it runs instance segmentation. Labels from the segmen-
tation step are then used to produce terrain cost maps that guide
path planning of the collaborating robots. While a large number
of images can lead to more accurate segmentation inferences, the
compute-intensive nature of the semantic segmentation process, as
fully-convolutional layers are executed (as part of DNNs) to out-
put per-pixel level labels, presents an interesting trade-off between
accuracy and execution efficiency.

3. Lightweight state sharing: In the settings that we consider
in this paper, the robots are deployed over a wide area requiring
long range communication for any data or state sharing between
them. Measurement studies [40] show that even at the highest
transmission power (e.g., 27 dBm), a nominal increase of the bitrate
to 9.6 kbit/s or more can reduce the range of communication in
the sub gigahertz frequencies from 8 to 6 kilometers. On the other
hand, typical images of resolution 1280 × 960 can easily take up
to 4.7 Mb in size1 translating to ≈8 minutes to transfer over such
channels, possibly with high packet losses. Prior works in 2D image
processing have looked at prioritization of image regions based
on criticality [22, 23] and overlap [34]. In these works, the content
of the image changes lending selection of subregions feasible. On
the contrary, in our setting, the content of the image is expected
to remain the same, however, revealing more salient attributes
that might change the learned semantics of certain subregions
as the resolution increases. This poses an interesting challenge
where potential approaches involving partial or local computation
onboard the robot, akin to generating perspective digests from early
layers of image processing pipelines [19], may reduce the size of
the data that is shared drastically.

4. Surviving harsh landings and releasemechanisms:As we
discuss in Section 2, for contested environments where deployments
need to be discreet (fast and minimal radio frequency signatures to
minimize probability of detection by adversarial forces), an addi-
tional design challenge is in creating mechanisms for the robots to
survive the landings on ground (after being air-deployed). While
crumple zone-like designs [26] may be effective, a related challenge
is in designing appropriate mechanisms for the robot to then release
itself from the contraptions that help them survive the landing.

4 PRELIMINARY EVALUATION
In this section, we first provide preliminary quantitative evidence of
how the resolution of an image impacts the downstream accuracy
of image processing tasks, taking object detection as an exemplar.
We then establish the worst case speeds air-dropped sensors would
undergo during their descent which can challenge the stability of
the images captured.

4.1 Resolution Vs. Accuracy Tradeoff
Here, we report on our preliminary experiments on quantifying
the degradation of accuracy in analysing images with increasing
altitude. Due to the lack of labelled vision datasets at varying al-
titudes, we create a synthetic, multi-resolution dataset from the
1https://www.bestprintingonline.com/resolution.htm
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Figure 4: Image resolution vs. object detection recall on the
PETS2009 dataset.

existing single resolution benchmark dataset, PETS2009 [12], by
systematically reducing the resolution to various extents (to proxy
altitude change).

In Figure 4, we plot the recall of running a widely used, light-
weight object detection DNN, SSD [24], on the dataset (on the 𝑦−
axis) against the resolution of the image on the 𝑥− axis. We keep
the coverage of the images the same across the different resolution
cases. We see that while the model is resilient to resolutions close to
its input size (i.e., 300 × 300, the model suffers a dramatic reduction
in performance (i.e., from 56% to 40%) when the input resolution
drops from 200 to 100 pixels.

4.2 Worst Case Speeds During Descent
One of the key design ideas behind the proposed system is to ascer-
tain images, in increasing resolution, during the descent. However,
the speed of the descent, and the resulting stability, will impact
the legibility of the images. We consider a legged hexapod suit-
able for air-dropping which weights approximately 6 Lbs. (≈2.2
kg), contains a Raspberry Pi 4 onboard for computation, and an
operation time of roughly 40 minutes (see Figure 5)2. Furthermore,
the hexapod can also support a payload of up to 1 kg which makes
it appropriate for transporting emergency relief (e.g., dry rations
and medicines) in the post-disaster response scenario we describe
earlier. Together with the Raspberry Pi 4 board, each unit costs
≤500 USD. We calculate the terminal velocity during the descent
assuming that the robot undergoes free fall – i.e., devoid of any
mechanisms for a controlled flight – as the worst case speed using
the formula 𝑉𝑡 =

√︃
2𝑚𝑔

𝜌𝐴𝐶𝑑
. Here,𝑚 = 6𝑙𝑏𝑠 is the mass of the hexa-

pod, 𝑔 = 9.81𝑚/𝑠2 is the gravitational acceleration, 𝜌 = 1.225𝑘𝑔/𝑚2

is the density of air, 𝐴 = 0.171𝑚2 is the area of the base of the
hexapod, and 𝐶𝑑 = 2.2916 is the drag coefficient which results in
a 𝑉𝑡 = 9.04𝑚/𝑠 . For this particular configuration, we find that the
worst case speed of descent is in fact far less than the nominal
speeds of autonomous vehicles on highways and freeways. In Fig-
ure 6, we plot the terminal velocity for objects of varying masses
and areas, and observe that designs with lower mass and larger
areas would incur fewer challenges in terms of motion blur and
stability.
2https://www.amazon.com/Freenove-Big-Hexapod-Robot-Kit-Raspberry-Pi-
Balancing-Recognition-Ultrasonic/dp/B08M5DXS2P
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Figure 5: An example of a low-cost ground robot suitable
for air-dropping. The robot weights approximately 6 Lbs.,
contains a Raspberry Pi 4 onboard for computation, and an
operation time of roughly 40 minutes.

Figure 6: The impact of the mass (in kg) and cross-sectional
area of the free falling object/robot on its terminal velocity.

5 RELATED WORK
Air–ground teaming: The use of unmanned autonomous systems
(UAS) in performing aerial surveillance has been investigated for
multitudes of scenarios (e.g., wildlife monitoring [3], illegal oil dis-
charge [37], forest fires [31], etc.) owing to their capabilities in
performing fast, broad-based monitoring. Recent works have also
investigated the feasibility of cooperative networked aerial sys-
tems [8] addressing challenges related to decentralized control and
planning. As Pippin et al. [33] describe, the heterogeneity in air and
ground perspectives, i.e., the high coverage, albeit low resolution
nature of aerial perspectives and the low coverage, high fidelity
nature of ground-based sensing, is useful in several practical ap-
plications. Recently, Arora et al. [5] studied the problem of route
planning for teams of unmanned aerial and ground vehicles con-
sidering the fuel constraints of UAVs, terrain constraints of UGVs
and their speed differential, such that the UAV and UGV teammates
rendezvouz for intermittent charging of the UAVs (using the equip-
ment carried by the UGVs). Hood et al. [17] design a system where
a UAV and UGV cooperate in exploring an unknown space (e.g., a

damaged building) where the UAV guides the movement path of
the UGV whereas the UGV maintains a fixed pose relative to the
UAV by tracking and following a fiducial tag on the underside of
the UAV. Deng at el. [11], recently, devised a sensor network for
air–ground surveillance for improved target tracking. Garzon et
al. [13] describe their early efforts in combining surveillance output
from mini quadrotor and a ground robot to visualize obstacles and
targets of interest. While these works describe efforts pertaining to
various scenarios of how air–ground heterogeneous perspectives
can be fused, they do not address terrain-aware navigation for the
ground robots. Furthermore, these efforts typically involve (i) a
single aerial system flying at a low altitude where issues of poor
resolution are not dominant, (ii) and are designed for environments
where active flight is a non-issue unlike our use cases where the
regions are contested and minimizing the flight duration as well as
the RF signatures that they produce are critical. The closest to our
vision, Peterson et al. [32] describe their recent efforts in leveraging
aerial perspectives for better terrain-awareness in ground robots.
To account for low resolution inherent in images from higher al-
titudes, they propose having the UAS traverse set paths to cover
larger ground at varying altitudes. Contrary to our proposed set-
ting, this approach, however, would not be feasible in contested
environments.

Light-weight Collaborative Perception at the Edge: Collab-
orative perception in static and mobile ground settngs, complemen-
tary to our vision, have been advocated recently [2, 18, 21, 35]. Qiu
et al.[35] describe a scenario where cameras of differing capabili-
ties co-exist in the same network: fixed surveillance cameras and
resource-constrained mobile devices with cameras. The authors
demonstrate that moving vehicles can be tracked seamlessly across
this heterogeneous camera network through selective actuation
of devices without overly draining the mobile devices. In essence,
the resource-intensive video analytics pipeline is performed on the
cloud and the mobile cameras are consulted intermittently, only
to resolve ambiguities. Further, Lee et al. [21] demonstrate signif-
icant savings in bandwidth needs (of dumb cameras that offload
raw footage to a central cloud) – they show that by establishing
space-time relationships, apriori, between co-existing cameras, that
they can be selectively turned ON (and OFF) leading to as much
as 238 times savings in bandwidth at a miss rate of only 15% for a
vehicle detection task. Similarly, Jain et al. [18] also show that sig-
nificant correlations exist between co-located cameras, and discuss
configurations of video analytics pipelines that can be triggered
by peer cameras leading to both cost efficiency and superior infer-
ence accuracy. Unlike such past work, we focus explicitly on using
collaboration to modify or abort the inferencing pipeline itself, in-
stead of selectively activating nodes or performing fusion of the
outputs from multiple nodes. Most recently, Yao et al. [2] describe
the vision for providing machine intelligence as a service at the
edge for resource-constrained devices. In addition to outlining core
capabilities required for enabling such a service (e.g., scheduling,
caching, resource profiling), they also describe opportunities for the
convergence of the idea of collaboration between devices and deep
intelligence as a service. Various recent works have described efforts
in enabling lightweight collaboration ( [1, 7, 19, 29] through differ-
ent configurations (e.g., techniques that do not require re-training
of the DNNs, and explore concepts such as region prioritization
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and partial execution of DNNs). The paradigm we propose in this
paper will extend techniques from the ground domain to address
aerial–to–ground challenges as well

6 CONCLUDING REMARKS
In this position paper, we propose a novel paradigm in air–ground
teamingwhere spatially distributed, air-delivered robots collaborate
in a resource-preserving manner to attain better reasoning over the
terrain they will eventually navigate. Our preliminary evaluations
show how lower resolution imaging (akin to those taken from very
high altitudes, for e.g., by hovering drones or satellite imagery) can
be detrimental to downstream applications such as object detection,
and motivate the need for higher resolution, closer to ground aerial
sensing. We discuss design goals and technical challenges ahead
for building AirDrop.
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